DR M.P.S. MEMORIAL COLLEGE OF BUSINESS STUDIES, SIKANDRA, AGRA

Assignment Question of BCA - 1 Sem

Subject: Mathematics - 1

1. Use Cramer's Rule to solve the following system of equations:
(i) $2 x-3 y+z=7,2 x+y-z=1,4 y+3 z=-11$
(ii) $-x-2 y+2 z=1, x-y+z=3,2 x+y-z=2$
2. Find the adjoint of matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right]$ and verify the result

$$
\mathrm{A}(\operatorname{adj} \mathrm{~A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}
$$

3. Reduce the following matrix into normal form and hence find its rank:

$$
A=\left[\begin{array}{cccc}
6 & 3 & 0 & -7 \\
2 & 3 & -1 & -1 \\
3 & 1 & 3 & -2 \\
1 & -1 & 2 & -4
\end{array}\right]
$$

4. Find Eigen value and Eigen vectors for the matrix: $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
5. Verify that matrix $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$; Satisfies it's own characteristic equation and also find A^{-1}
6. Evaluate: (i) $\lim _{x \rightarrow 2} \frac{x^{10}-1024}{x^{5}-32}$
$\begin{array}{ll}\text { (ii) } \lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{x^{2}} & \text { (iii) } \frac{d}{d x} \cos \left(\cot x^{2}\right)\end{array}$
(iv) $\frac{d}{d x}\left[(\sin x)^{x}+x^{\log x}\right](\mathrm{v})$ nth derivative of $\log (\mathrm{ax}+\mathrm{b})$
7. A function f is defined by

$$
f(x)=\left\{\begin{array}{llr}
-x^{2} & \text { if } r \leq 0 \\
5 x-4 & \text { if } 0<x \leq 1 \\
4 x^{2}-3 x & \text { if } 1<x<2 \\
3 x+4 & \text { if } r \geq 2
\end{array}\right.
$$

Examine f for continuity at $x=0,1,2$. Also discuss the kind of discontinuity, if any.
8. Show that the function $f(x)$ is continuous at $x=3$,

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { for } x \neq 3 \\ 6 & \text { for } x=3\end{cases}
$$

9. Define continuity, discontinuity and types of discontinuities with suitable examples.
10. (i) Expand $e^{x} \cos x$ by Maclaurin's theorem.
(ii) Expand $\log \sin x$ in the powers of $(x-2)$ using Taylor's expansions.
11. (i) State Rolle's Theorem and verify for $f(x)=2 x^{3}+x^{2}-4 x-2$
(ii) State Lagrange's Mean Value Theorem and verify for $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)$ in $(0,4)$.
12. (i) If $\cos ^{-1} \frac{y}{b}=\log \left(\frac{x}{n}\right)^{n}$, then show that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+2 n^{2} y_{n}=0$
(ii) If $y=\cos \left(\operatorname{msin}^{-1} x\right)$, then $\left(y_{n}\right)_{0}$
13. From the definition of a definite integral as the limit of a sum evaluate $\int^{b} e^{x} d x$.
14. (i) If a, b, c be any three vector the proof that $[a+b, b+c, c+a]=2[a, b, c]$
(ii) Calculate angle between $7 \mathrm{i}-8 \mathrm{j}+9 \mathrm{k}$ and $3 \mathrm{i}+20 \mathrm{j}+5 \mathrm{k}$
15. (i) Find the area of triangle whose vertices are $\mathrm{A}(3,-1,2), \mathrm{B}(1,-1,3)$ and $\mathrm{C}(4,-3,1)$.
(ii) Find given vectors $5 \mathrm{i}+6 \mathrm{j}+7 \mathrm{k}, 7 \mathrm{i}-8 \mathrm{j}+9 \mathrm{k}$ and $3 \mathrm{i}+20 \mathrm{j}+5 \mathrm{k}$ are coplanar or not.
